Spatial Knowledge-Infused Hierarchical Learning: An Application in Flood Mapping on Earth Imagery

Image credit: Unsplash

Abstract

Deep learning for Earth imagery plays an increasingly important role in geoscience applications such as agriculture, ecology, and natural disaster management. Still, progress is often hindered by the limited training labels. Given Earth imagery with limited training labels, a base deep neural network model, and a spatial knowledge base with label constraints, our problem is to infer the full labels while training the neural network. The problem is challenging due to the sparse and noisy input labels, spatial uncertainty within the label inference process, and high computational costs associated with a large number of sample locations. Existing works on neuro-symbolic models focus on integrating symbolic logic into neural networks (e.g., loss function, model architecture, and training label augmentation), but these methods do not fully address the challenges of spatial data (e.g., spatial uncertainty, the trade-off between spatial granularity and computational costs). To bridge this gap, we propose a novel Spatial Knowledge-Infused Hierarchical Learning (SKI-HL) framework that iteratively infers sample labels within a multi-resolution hierarchy. Our framework consists of a module to selectively infer labels in different resolutions based on spatial uncertainty and a module to train neural network parameters with uncertainty-aware multi-instance learning. Extensive experiments on real-world flood mapping datasets show that the proposed model outperforms several baseline methods. The code is available at https://github.com/ZelinXu2000/SKI-HL.

Publication
In The 31st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (GIS)
Click the Cite button above to demo the feature to enable visitors to import publication metadata into their reference management software.
Create your slides in Markdown - click the Slides button to check out the example.
Wenchong He
Wenchong He
Ph.D. Candidate in Computer Science

I am a Ph.D. candidate in Department of Computer & Information Science & Engineering at the University of Florida. My broad research areas are data science, machine learning and artificial intelligence. Specifically my research focuses on spatiotemporal data mining, knowledge-informed machine learning, trustworthy AI as well as interdisciplinary scientific applications in climate science, environmental monitoring and physics simulation. I am on the academic and industry job market for tenure-track faculty or research scientist position.